MSG 161.69

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{100},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{10-1}},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{01-1}},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{A}_1 & \text{A} & 1 & -1 & 1 & -\mathrm{i} &\mathrm{i}&\mathrm{i}\\ \text{A}_2 & \text{A} & 1 & -1 & 1 &\mathrm{i}& -\mathrm{i} & -\mathrm{i} \\ \text{A}_3 & \text{A} & 2 & 1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
B \(\left(0,0,\frac{3}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{100},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{10-1}},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{01-1}},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{B}_1 & \text{A} & 1 & -1 & 1 & 1 & -1 & -1 \\ \text{B}_2 & \text{A} & 1 & -1 & 1 & -1 & 1 & 1 \\ \text{B}_3 & \text{A} & 2 & 1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,0,\frac{3 t}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{100},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{10-1}},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{01-1}},\left\{0,0,\frac{1}{2}\right\}\right\} \\ a_1 & \text{A} & 1 & -1 & 1 & -\mathrm{i} e^{-\frac{3}{2}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{3}{2}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{3}{2}\mathrm{i}\pi t} \\ a_2 & \text{A} & 1 & -1 & 1 &\mathrm{i}e^{-\frac{3}{2}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{3}{2}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{3}{2}\mathrm{i}\pi t} \\ a_3 & \text{A} & 2 & 1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
\(b\) \(\left(0,0,-\frac{3 t}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{100},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{10-1}},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{\text{01-1}},\left\{0,0,\frac{1}{2}\right\}\right\} \\ b_1 & \text{A} & 1 & -1 & 1 & -\mathrm{i} e^{\frac{3\mathrm{i}\pi t}{2}} &\mathrm{i}e^{\frac{3\mathrm{i}\pi t}{2}} &\mathrm{i}e^{\frac{3\mathrm{i}\pi t}{2}} \\ b_2 & \text{A} & 1 & -1 & 1 &\mathrm{i}e^{\frac{3\mathrm{i}\pi t}{2}} & -\mathrm{i} e^{\frac{3\mathrm{i}\pi t}{2}} & -\mathrm{i} e^{\frac{3\mathrm{i}\pi t}{2}} \\ b_3 & \text{A} & 2 & 1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
\(c\) \(\left(0,\frac{2 t}{\sqrt{3}},\frac{3}{2}-t\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{100},\left\{0,0,\frac{1}{2}\right\}\right\} \\ c_1 & \text{A} & 1 & e^{i \pi t} \\ c_2 & \text{A} & 1 & -e^{i \pi t} \\ \end{array} \right)\)
\(d\) \(\left(t,\frac{t}{\sqrt{3}},\frac{3}{2}-2 t\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{\text{01-1}},\left\{0,0,\frac{1}{2}\right\}\right\} \\ d_1 & \text{A} & 1 & e^{2\mathrm{i}\pi t} \\ d_2 & \text{A} & 1 & -e^{2\mathrm{i}\pi t} \\ \end{array} \right)\)