\(D^0\) | EAZ & character of irrep | |
A | \(\left(0,0,\frac{1}{2}\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{1}{3}\right\}\right\} \\ \text{A}_1 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{A}_2 & \text{A} & 1 & 1 & -1 \\ \text{A}_3 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \end{array} \right)\) |
B | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{1}{3}\right\}\right\} \\ \text{B}_1 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{B}_2 & \text{A} & 1 & 1 & -1 \\ \text{B}_3 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \end{array} \right)\) |
C | \(\left(\frac{2}{3},0,\frac{1}{2}\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{1}{3}\right\}\right\} \\ \text{C}_1 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{C}_2 & \text{A} & 1 & 1 & -1 \\ \text{C}_3 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \end{array} \right)\) |
\(D^1\) | EAZ & character of irrep | |
\(a\) | \(\left(0,0,\frac{1}{2}-t\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{1}{3}\right\}\right\} \\ a_1 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{\frac{4\mathrm{i}\pi t}{3}} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{\frac{2\mathrm{i}\pi t}{3}} \\ a_2 & \text{A} & 1 & e^{\frac{4\mathrm{i}\pi t}{3}} & -e^{\frac{2\mathrm{i}\pi t}{3}} \\ a_3 & \text{A} & 1 & e^{\frac{2}{3}\mathrm{i}\pi (2 t-1)} & e^{\frac{1}{3}\mathrm{i}\pi (2 t-1)} \\ \end{array} \right)\) |
\(b\) | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}-t\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{1}{3}\right\}\right\} \\ b_1 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{\frac{4\mathrm{i}\pi t}{3}} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{\frac{2\mathrm{i}\pi t}{3}} \\ b_2 & \text{A} & 1 & e^{\frac{4\mathrm{i}\pi t}{3}} & -e^{\frac{2\mathrm{i}\pi t}{3}} \\ b_3 & \text{A} & 1 & e^{\frac{2}{3}\mathrm{i}\pi (2 t-1)} & e^{\frac{1}{3}\mathrm{i}\pi (2 t-1)} \\ \end{array} \right)\) |
\(c\) | \(\left(\frac{2}{3},0,\frac{1}{2}-t\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{1}{3}\right\}\right\} \\ c_1 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{\frac{4\mathrm{i}\pi t}{3}} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{\frac{2\mathrm{i}\pi t}{3}} \\ c_2 & \text{A} & 1 & e^{\frac{4\mathrm{i}\pi t}{3}} & -e^{\frac{2\mathrm{i}\pi t}{3}} \\ c_3 & \text{A} & 1 & e^{\frac{2}{3}\mathrm{i}\pi (2 t-1)} & e^{\frac{1}{3}\mathrm{i}\pi (2 t-1)} \\ \end{array} \right)\) |
\(d\) | \(\left(\frac{2 t}{3},0,\frac{1}{2}\right)\) | \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ d_1 & \text{A} & 1 \\ \end{array} \right)\) |
\(e\) | \(\left(\frac{t+1}{3},-\frac{t-1}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ e_1 & \text{A} & 1 \\ \end{array} \right)\) |