MSG 148.19

\(D^0\) EAZ & character of irrep
A \(\left(0,0,\frac{3}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ \text{A}_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{A}_2 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{A}_3 & \text{AI} & 1 & 1 & 1 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,0,3 t-\frac{3}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ a_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ a_2 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ a_3 & \text{AI} & 1 & 1 & 1 \\ \end{array} \right)\)
\(b\) \(\left(t,-\frac{t}{\sqrt{3}},\frac{3}{2}-t\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ b_1 & \text{AI} & 1 \\ \end{array} \right)\)
\(c\) \(\left(t,-\frac{t}{\sqrt{3}},2 t-\frac{3}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ c_1 & \text{AI} & 1 \\ \end{array} \right)\)