MSG 176.144

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3_{001}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{6}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{3}_{001}\right\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{3}^-{}_{001}\right\} & \left\{\bar{6}^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{A}_1 & \text{AI} & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 \\ \text{A}_2 & \text{AI} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \text{A}_3 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{A}_4 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{A}_5 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{A}_6 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{A}_7 & \text{A} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & -1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{A}_8 & \text{A} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{A}_9 & \text{A} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{A}_{10} & \text{A} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{A}_{11} & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{A}_{12} & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
B \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{1}\right\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{B}_1 & \text{AI} & 1 & -1 & -1 & 1 \\ \text{B}_2 & \text{AI} & 1 & -1 & 1 & -1 \\ \text{B}_3 & \text{AI} & 1 & 1 & -1 & -1 \\ \text{B}_4 & \text{AI} & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
C \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},0\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{\bar{6}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{6}^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{C}_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{C}_2 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{C}_3 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{C}_4 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{C}_5 & \text{AI} & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{C}_6 & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
D \(\left(0,0,\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3_{001}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{6}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{3}_{001}\right\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{3}^-{}_{001}\right\} & \left\{\bar{6}^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{D}_1 & \text{A} & 2 & 0 & -1-\mathrm{i} \sqrt{3} & 0 & -1+\mathrm{i} \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text{D}_2 & \text{A} & 2 & 0 & -1+\mathrm{i} \sqrt{3} & 0 & -1-\mathrm{i} \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text{D}_3 & \text{AI} & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
E \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{1}\right\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{E}_1 & \text{AI} & 2 & 0 & 0 & 0 \\ \end{array} \right)\)
F \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{\bar{6}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{\bar{6}^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{F}_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{F}_2 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{F}_3 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{F}_4 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{F}_5 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{F}_6 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,0,\frac{t}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3_{001}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ a_1 & \text{AI} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_2 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_3 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_4 & \text{A} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_5 & \text{A} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_6 & \text{AI} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\)
\(b\) \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1-t}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ b_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ b_2 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ b_3 & \text{AI} & 1 & 1 & 1 \\ \end{array} \right)\)
\(c\) \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{t}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ c_1 & \text{AI} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ c_2 & \text{AI} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\)
\(d\) \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},0\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ d_1 & \text{AI} & 1 & -1 \\ d_2 & \text{AI} & 1 & 1 \\ \end{array} \right)\)
\(e\) \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ e_1 & \text{A} & 1 & -1 \\ e_2 & \text{A} & 1 & 1 \\ \end{array} \right)\)
\(f\) \(\left(\frac{3-t}{6},\frac{t+1}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ f_1 & \text{AI} & 1 & -1 \\ f_2 & \text{AI} & 1 & 1 \\ \end{array} \right)\)
\(g\) \(\left(\frac{3-t}{6},\frac{t+1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ g_1 & \text{A} & 1 & -1 \\ g_2 & \text{A} & 1 & 1 \\ \end{array} \right)\)