\(D^0\) | EAZ & character of irrep | |
A | \(\left(0,0,0\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{2_{100}\right\} & \left\{2_{110}\right\} & \left\{2_{010}\right\} & \left\{\bar{6}_{001}\right\} & \left\{m_{001}\right\} & \left\{\bar{6}^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ \text{A}_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ \text{A}_2 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{A}_3 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{A}_4 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{A}_5 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ \text{A}_6 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ \end{array} \right)\) |
B | \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},0\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010}\right\} & \left\{m_{001}\right\} & \left\{m_{210}\right\} \\ \text{B}_1 & \text{A} & 1 & -1 & -1 & 1 \\ \text{B}_2 & \text{A} & 1 & -1 & 1 & -1 \\ \text{B}_3 & \text{A} & 1 & 1 & -1 & -1 \\ \text{B}_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
C | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{2_{100}\right\} & \left\{2_{110}\right\} & \left\{2_{010}\right\} & \left\{\bar{6}_{001}\right\} & \left\{m_{001}\right\} & \left\{\bar{6}^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ \text{C}_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ \text{C}_2 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{C}_3 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{C}_4 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{C}_5 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ \text{C}_6 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ \end{array} \right)\) |
D | \(\left(\frac{2}{3},0,0\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{2_{100}\right\} & \left\{2_{110}\right\} & \left\{2_{010}\right\} & \left\{\bar{6}_{001}\right\} & \left\{m_{001}\right\} & \left\{\bar{6}^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ \text{D}_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ \text{D}_2 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{D}_3 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{D}_4 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{D}_5 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ \text{D}_6 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ \end{array} \right)\) |
E | \(\left(0,0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{2_{100}\right\} & \left\{2_{110}\right\} & \left\{2_{010}\right\} & \left\{\bar{6}_{001}\right\} & \left\{m_{001}\right\} & \left\{\bar{6}^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ \text{E}_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ \text{E}_2 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{E}_3 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{E}_4 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{E}_5 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ \text{E}_6 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ \end{array} \right)\) |
F | \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010}\right\} & \left\{m_{001}\right\} & \left\{m_{210}\right\} \\ \text{F}_1 & \text{A} & 1 & -1 & -1 & 1 \\ \text{F}_2 & \text{A} & 1 & -1 & 1 & -1 \\ \text{F}_3 & \text{A} & 1 & 1 & -1 & -1 \\ \text{F}_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
G | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{2_{100}\right\} & \left\{2_{110}\right\} & \left\{2_{010}\right\} & \left\{\bar{6}_{001}\right\} & \left\{m_{001}\right\} & \left\{\bar{6}^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ \text{G}_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ \text{G}_2 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{G}_3 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{G}_4 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{G}_5 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ \text{G}_6 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ \end{array} \right)\) |
H | \(\left(\frac{2}{3},0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{2_{100}\right\} & \left\{2_{110}\right\} & \left\{2_{010}\right\} & \left\{\bar{6}_{001}\right\} & \left\{m_{001}\right\} & \left\{\bar{6}^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ \text{H}_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\ \text{H}_2 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{H}_3 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{H}_4 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{H}_5 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ \text{H}_6 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ \end{array} \right)\) |
\(D^1\) | EAZ & character of irrep | |
\(a\) | \(\left(0,0,\frac{t}{2}\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ a_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 \\ a_2 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 \\ a_3 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\) |
\(b\) | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1-t}{2}\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ b_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 \\ b_2 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 \\ b_3 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\) |
\(c\) | \(\left(\frac{2}{3},0,\frac{1-t}{2}\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210}\right\} & \left\{m_{010}\right\} & \left\{m_{-110}\right\} \\ c_1 & \text{A} & 1 & 1 & 1 & -1 & -1 & -1 \\ c_2 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 \\ c_3 & \text{A} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\) |
\(d\) | \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{110}\right\} & \left\{m_{001}\right\} & \left\{m_{-110}\right\} \\ d_1 & \text{A} & 1 & -1 & -1 & 1 \\ d_2 & \text{A} & 1 & -1 & 1 & -1 \\ d_3 & \text{A} & 1 & 1 & -1 & -1 \\ d_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
\(e\) | \(\left(\frac{2 t}{3},0,0\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100}\right\} & \left\{m_{001}\right\} & \left\{m_{010}\right\} \\ e_1 & \text{A} & 1 & -1 & -1 & 1 \\ e_2 & \text{A} & 1 & -1 & 1 & -1 \\ e_3 & \text{A} & 1 & 1 & -1 & -1 \\ e_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
\(f\) | \(\left(\frac{t+2}{6},-\frac{t-2}{2 \sqrt{3}},0\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010}\right\} & \left\{m_{001}\right\} & \left\{m_{210}\right\} \\ f_1 & \text{A} & 1 & -1 & -1 & 1 \\ f_2 & \text{A} & 1 & -1 & 1 & -1 \\ f_3 & \text{A} & 1 & 1 & -1 & -1 \\ f_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
\(g\) | \(\left(\frac{t+3}{6},-\frac{t-1}{2 \sqrt{3}},0\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010}\right\} & \left\{m_{001}\right\} & \left\{m_{210}\right\} \\ g_1 & \text{A} & 1 & -1 & -1 & 1 \\ g_2 & \text{A} & 1 & -1 & 1 & -1 \\ g_3 & \text{A} & 1 & 1 & -1 & -1 \\ g_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
\(h\) | \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{110}\right\} & \left\{m_{001}\right\} & \left\{m_{-110}\right\} \\ h_1 & \text{A} & 1 & -1 & -1 & 1 \\ h_2 & \text{A} & 1 & -1 & 1 & -1 \\ h_3 & \text{A} & 1 & 1 & -1 & -1 \\ h_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
\(i\) | \(\left(\frac{2 t}{3},0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100}\right\} & \left\{m_{001}\right\} & \left\{m_{010}\right\} \\ i_1 & \text{A} & 1 & -1 & -1 & 1 \\ i_2 & \text{A} & 1 & -1 & 1 & -1 \\ i_3 & \text{A} & 1 & 1 & -1 & -1 \\ i_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
\(j\) | \(\left(\frac{t+2}{6},-\frac{t-2}{2 \sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010}\right\} & \left\{m_{001}\right\} & \left\{m_{210}\right\} \\ j_1 & \text{A} & 1 & -1 & -1 & 1 \\ j_2 & \text{A} & 1 & -1 & 1 & -1 \\ j_3 & \text{A} & 1 & 1 & -1 & -1 \\ j_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
\(k\) | \(\left(\frac{t+3}{6},-\frac{t-1}{2 \sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010}\right\} & \left\{m_{001}\right\} & \left\{m_{210}\right\} \\ k_1 & \text{A} & 1 & -1 & -1 & 1 \\ k_2 & \text{A} & 1 & -1 & 1 & -1 \\ k_3 & \text{A} & 1 & 1 & -1 & -1 \\ k_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |