A | \(\left(0,0,0\right)\) | \(\left(
\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccc}
\text{} & \text{EAZ} & \{1\} & \left\{4_{100},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{4^-{}_{100},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{4_{010},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{010},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{4_{001},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{4^-{}_{001},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{2_{100},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{2_{001},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{2_{110},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{2_{\text{1-10}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{011},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{2_{\text{01-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{101},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{2_{\text{10-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{3_{111}\right\} & \left\{3^-{}_{111}\right\} & \left\{3^-{}_{\text{1-1-1}},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{3_{\text{1-1-1}},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{3^-{}_{\text{-11-1}},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{3_{\text{-11-1}},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{3^-{}_{\text{-1-11}},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{3_{\text{-1-11}},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{100},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{\bar{4}^-{}_{100},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{\bar{4}_{010},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{\bar{4}^-{}_{010},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{m_{100},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{m_{001},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{m_{110},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{m_{\text{1-10}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{011},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{m_{\text{01-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{101},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{m_{\text{10-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{3}_{111}\right\} & \left\{\bar{3}^-{}_{111}\right\} & \left\{\bar{3}^-{}_{\text{1-1-1}},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{\bar{3}_{\text{1-1-1}},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{\bar{3}^-{}_{\text{-11-1}},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{\bar{3}_{\text{-11-1}},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{\bar{3}^-{}_{\text{-1-11}},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{\bar{3}_{\text{-1-11}},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} \\
\text{A}_1 & \text{AI} & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\text{A}_2 & \text{AI} & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\text{A}_3 & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\text{A}_4 & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\text{A}_5 & \text{AI} & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\text{A}_6 & \text{AI} & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\text{A}_7 & \text{AI} & 3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{A}_8 & \text{AI} & 3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{A}_9 & \text{AI} & 3 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{A}_{10} & \text{AI} & 3 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\) |
B | \(\left(0,1,0\right)\) | \(\left(
\begin{array}{cccccccccccccccccc}
\text{} & \text{EAZ} & \{1\} & \left\{4_{010},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{010},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{2_{100},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{2_{001},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{2_{101},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{2_{\text{10-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{010},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{\bar{4}^-{}_{010},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{m_{100},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{m_{001},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} & \left\{m_{101},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{m_{\text{10-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} \\
\text{B}_1 & \text{AI} & 2 & 0 & 0 & 0 & -2 & 0 & 2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{B}_2 & \text{AI} & 2 & 0 & 0 & 0 & -2 & 0 & -2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{B}_3 & \text{AI} & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 \\
\text{B}_4 & \text{AI} & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 \\
\end{array}
\right)\) |
C | \(\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\) | \(\left(
\begin{array}{cccccccccccccc}
\text{} & \text{EAZ} & \{1\} & \left\{2_{\text{1-10}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{\text{01-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{\text{10-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{3_{111}\right\} & \left\{3^-{}_{111}\right\} & \left\{\bar{1}\right\} & \left\{m_{\text{1-10}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{\text{01-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{\text{10-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{3}_{111}\right\} & \left\{\bar{3}^-{}_{111}\right\} \\
\text{C}_1 & \text{AI} & 2 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & -\mathrm{i} \sqrt{3} &\mathrm{i}\sqrt{3} \\
\text{C}_2 & \text{AI} & 2 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 &\mathrm{i}\sqrt{3} & -\mathrm{i} \sqrt{3} \\
\text{C}_3 & \text{AI} & 2 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\) |
D | \(\left(\frac{1}{2},1,0\right)\) | \(\left(
\begin{array}{cccccccccc}
\text{} & \text{EAZ} & \{1\} & \left\{2_{100},\left\{0,\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{2_{011},\left\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\right\}\right\} & \left\{2_{\text{01-1}},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{4}_{100},\left\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\right\}\right\} & \left\{\bar{4}^-{}_{100},\left\{\frac{1}{4},\frac{1}{4},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{4},0,\frac{1}{4}\right\}\right\} & \left\{m_{001},\left\{\frac{1}{4},\frac{1}{4},0\right\}\right\} \\
\text{D}_1 & \text{AI} & 2 & 0 & 0 & 0 & 1+\mathrm{i} & 1-\mathrm{i} & 0 & 0 \\
\text{D}_2 & \text{AI} & 2 & 0 & 0 & 0 & -1-\mathrm{i} & -1+\mathrm{i} & 0 & 0 \\
\end{array}
\right)\) |