MSG 85.62

\(D^0\) EAZ & character of irrep
A \(\left(0,0,\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{A}_1 & \text{AI} & 1 & -1 & -1 & 1 \\ \text{A}_2 & \text{A} & 1 & -\mathrm{i} &\mathrm{i}& -1 \\ \text{A}_3 & \text{A} & 1 &\mathrm{i}& -\mathrm{i} & -1 \\ \text{A}_4 & \text{AI} & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
B \(\left(\frac{1}{2},0,\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{B}_1 & \text{A} & 1 & -1 \\ \text{B}_2 & \text{A} & 1 & 1 \\ \end{array} \right)\)
C \(\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{C}_1 & \text{AI} & 1 &\mathrm{i}& -\mathrm{i} & -1 \\ \text{C}_2 & \text{A} & 1 & -1 & -1 & 1 \\ \text{C}_3 & \text{A} & 1 & 1 & 1 & 1 \\ \text{C}_4 & \text{AI} & 1 & -\mathrm{i} &\mathrm{i}& -1 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(\frac{t}{2},0,\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ a_1 & \text{AI} & 1 \\ \end{array} \right)\)
\(b\) \(\left(\frac{1}{2},\frac{t}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ b_1 & \text{AI} & 1 \\ \end{array} \right)\)
\(c\) \(\left(0,0,t-\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ c_1 & \text{AI} & 1 & -1 & -1 & 1 \\ c_2 & \text{A} & 1 & -\mathrm{i} &\mathrm{i}& -1 \\ c_3 & \text{A} & 1 &\mathrm{i}& -\mathrm{i} & -1 \\ c_4 & \text{AI} & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
\(d\) \(\left(\frac{1}{2},0,t-\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ d_1 & \text{A} & 1 & -1 \\ d_2 & \text{A} & 1 & 1 \\ \end{array} \right)\)
\(e\) \(\left(\frac{1}{2},\frac{1}{2},t-\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ e_1 & \text{AI} & 1 &\mathrm{i}& -\mathrm{i} & -1 \\ e_2 & \text{A} & 1 & -1 & -1 & 1 \\ e_3 & \text{A} & 1 & 1 & 1 & 1 \\ e_4 & \text{AI} & 1 & -\mathrm{i} &\mathrm{i}& -1 \\ \end{array} \right)\)