MSG 169.113 \(\text{B}\)

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{5}{6}\right\}\right\} \\ \text{A}_1 & \text{A} & 1 & -\sqrt[6]{-1} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & -\mathrm{i} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -(-1)^{5/6} \\ \text{A}_2 & \text{A} & 1 & (-1)^{5/6} & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) &\mathrm{i}& -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \sqrt[6]{-1} \\ \text{A}_3 & \text{C} & 1 & -\mathrm{i} & -1 &\mathrm{i}& 1 & -\mathrm{i} \\ \text{A}_4 & \text{C} & 1 &\mathrm{i}& -1 & -\mathrm{i} & 1 &\mathrm{i}\\ \text{A}_5 & \text{A} & 1 & -(-1)^{5/6} & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\mathrm{i} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\sqrt[6]{-1} \\ \text{A}_6 & \text{A} & 1 & \sqrt[6]{-1} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) &\mathrm{i}& \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & (-1)^{5/6} \\ \end{array} \right)\)
B \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{B}_1 & \text{C} & 1 & -\mathrm{i} \\ \text{B}_2 & \text{C} & 1 &\mathrm{i}\\ \end{array} \right)\)
C \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},0\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} \\ \text{C}_1 & \text{C} & 1 & -1 & 1 \\ \text{C}_2 & \text{A} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{C}_3 & \text{A} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \end{array} \right)\)
D \(\left(0,0,\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{5}{6}\right\}\right\} \\ \text{D}_1 & \text{A} & 1 & -1 & 1 & -1 & 1 & -1 \\ \text{D}_2 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{D}_3 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{D}_4 & \text{A} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{D}_5 & \text{A} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{D}_6 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
E \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{E}_1 & \text{A} & 1 & -1 \\ \text{E}_2 & \text{A} & 1 & 1 \\ \end{array} \right)\)
F \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} \\ \text{F}_1 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{F}_2 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{F}_3 & \text{D} & 1 & 1 & 1 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,0,\frac{t}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{5}{6}\right\}\right\} \\ a_1 & \text{A} & 1 & -\sqrt[6]{-1} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & -(-1)^{5/6} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ a_2 & \text{A} & 1 & (-1)^{5/6} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & \sqrt[6]{-1} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ a_3 & \text{A} & 1 & -\mathrm{i} e^{-\frac{1}{6}\mathrm{i}\pi t} & -e^{-\frac{1}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{2}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ a_4 & \text{A} & 1 &\mathrm{i}e^{-\frac{1}{6}\mathrm{i}\pi t} & -e^{-\frac{1}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{2}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{5}{6}\mathrm{i}\pi t} \\ a_5 & \text{A} & 1 & -(-1)^{5/6} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & -\sqrt[6]{-1} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ a_6 & \text{A} & 1 & \sqrt[6]{-1} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & (-1)^{5/6} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ \end{array} \right)\)
\(b\) \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1-t}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} \\ b_1 & \text{A} & 1 & -e^{\frac{1}{3}\mathrm{i}\pi (t-1)} & e^{\frac{2}{3}\mathrm{i}\pi (t-1)} \\ b_2 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{\frac{i \pi t}{3}} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{\frac{2\mathrm{i}\pi t}{3}} \\ b_3 & \text{A} & 1 & e^{\frac{i \pi t}{3}} & e^{\frac{2\mathrm{i}\pi t}{3}} \\ \end{array} \right)\)
\(c\) \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{t}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ c_1 & \text{A} & 1 & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} \\ c_2 & \text{A} & 1 &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\)
\(d\) \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},0\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ d_1 & \text{C} & 1 \\ \end{array} \right)\)
\(e\) \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ e_1 & \text{D} & 1 \\ \end{array} \right)\)
\(f\) \(\left(\frac{3-t}{6},\frac{t+1}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ f_1 & \text{C} & 1 \\ \end{array} \right)\)
\(g\) \(\left(\frac{3-t}{6},\frac{t+1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ g_1 & \text{D} & 1 \\ \end{array} \right)\)