\(D^0\) | EAZ & character of irrep | |
A | \(\left(0,0,0\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{5}{6}\right\}\right\} & \left\{2_{100}\right\} & \left\{2_{110},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{010},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{2_{210},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{2_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{2_{-110},\left\{0,0,\frac{5}{6}\right\}\right\} \\ \text{A}_1 & \text{CI} & 2 & -\sqrt{3} & 1 & 0 & -1 & \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 \\ \text{A}_2 & \text{CI} & 2 & 0 & -2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text{A}_3 & \text{CI} & 2 & \sqrt{3} & 1 & 0 & -1 & -\sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\) |
B | \(\left(0,\frac{1}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{2_{100}\right\} & \left\{2_{010},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{B}_1 & \text{CI} & 2 & 0 & 0 & 0 \\ \end{array} \right)\) |
C | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{2_{100}\right\} & \left\{2_{110},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{010},\left\{0,0,\frac{2}{3}\right\}\right\} \\ \text{C}_1 & \text{AI} & 1 & -1 & 1 & -\mathrm{i} &\mathrm{i}&\mathrm{i}\\ \text{C}_2 & \text{AI} & 1 & -1 & 1 &\mathrm{i}& -\mathrm{i} & -\mathrm{i} \\ \text{C}_3 & \text{CI} & 2 & 1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\) |
D | \(\left(0,0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{5}{6}\right\}\right\} & \left\{2_{100}\right\} & \left\{2_{110},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{010},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{2_{210},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{2_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{2_{-110},\left\{0,0,\frac{5}{6}\right\}\right\} \\ \text{D}_1 & \text{C} & 1 & -1 & 1 & -1 & 1 & -1 & -\mathrm{i} & -\mathrm{i} &\mathrm{i}&\mathrm{i}&\mathrm{i}& -\mathrm{i} \\ \text{D}_2 & \text{C} & 1 & -1 & 1 & -1 & 1 & -1 &\mathrm{i}&\mathrm{i}& -\mathrm{i} & -\mathrm{i} & -\mathrm{i} &\mathrm{i}\\ \text{D}_3 & \text{C} & 1 & 1 & 1 & 1 & 1 & 1 & -\mathrm{i} & -\mathrm{i} &\mathrm{i}& -\mathrm{i} & -\mathrm{i} &\mathrm{i}\\ \text{D}_4 & \text{C} & 1 & 1 & 1 & 1 & 1 & 1 &\mathrm{i}&\mathrm{i}& -\mathrm{i} &\mathrm{i}&\mathrm{i}& -\mathrm{i} \\ \text{D}_5 & \text{CI} & 2 & -1 & -1 & 2 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text{D}_6 & \text{CI} & 2 & 1 & -1 & -2 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\) |
E | \(\left(0,\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{2_{100}\right\} & \left\{2_{010},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{E}_1 & \text{C} & 1 & -1 & -\mathrm{i} &\mathrm{i}\\ \text{E}_2 & \text{C} & 1 & -1 &\mathrm{i}& -\mathrm{i} \\ \text{E}_3 & \text{C} & 1 & 1 & -\mathrm{i} & -\mathrm{i} \\ \text{E}_4 & \text{C} & 1 & 1 &\mathrm{i}&\mathrm{i}\\ \end{array} \right)\) |
F | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{2_{100}\right\} & \left\{2_{110},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{010},\left\{0,0,\frac{2}{3}\right\}\right\} \\ \text{F}_1 & \text{C} & 1 & 1 & 1 & -\mathrm{i} & -\mathrm{i} &\mathrm{i}\\ \text{F}_2 & \text{C} & 1 & 1 & 1 &\mathrm{i}&\mathrm{i}& -\mathrm{i} \\ \text{F}_3 & \text{CI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\) |
\(D^1\) | EAZ & character of irrep | |
\(a\) | \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{110},\left\{0,0,\frac{1}{3}\right\}\right\} \\ a_1 & \text{AI} & 1 & -\mathrm{i} \\ a_2 & \text{AI} & 1 &\mathrm{i}\\ \end{array} \right)\) |
\(b\) | \(\left(0,\frac{t}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010},\left\{0,0,\frac{1}{2}\right\}\right\} \\ b_1 & \text{AI} & 1 & -\mathrm{i} \\ b_2 & \text{AI} & 1 &\mathrm{i}\\ \end{array} \right)\) |
\(c\) | \(\left(\frac{t}{3},\frac{1}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100}\right\} \\ c_1 & \text{AI} & 1 & -\mathrm{i} \\ c_2 & \text{AI} & 1 &\mathrm{i}\\ \end{array} \right)\) |
\(d\) | \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{110},\left\{0,0,\frac{1}{3}\right\}\right\} \\ d_1 & \text{C} & 1 &\mathrm{i}\\ d_2 & \text{C} & 1 & -\mathrm{i} \\ \end{array} \right)\) |
\(e\) | \(\left(0,\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010},\left\{0,0,\frac{1}{2}\right\}\right\} \\ e_1 & \text{C} & 1 &\mathrm{i}\\ e_2 & \text{C} & 1 & -\mathrm{i} \\ \end{array} \right)\) |
\(f\) | \(\left(\frac{t}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100}\right\} \\ f_1 & \text{C} & 1 & -\mathrm{i} \\ f_2 & \text{C} & 1 &\mathrm{i}\\ \end{array} \right)\) |
\(g\) | \(\left(0,0,\frac{t}{2}\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{6}\right\}\right\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{5}{6}\right\}\right\} \\ g_1 & \text{CI} & 1 & -\sqrt[6]{-1} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & -(-1)^{5/6} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ g_2 & \text{CI} & 1 & (-1)^{5/6} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & \sqrt[6]{-1} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ g_3 & \text{CI} & 1 & -\mathrm{i} e^{-\frac{1}{6}\mathrm{i}\pi t} & -e^{-\frac{1}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{2}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ g_4 & \text{CI} & 1 &\mathrm{i}e^{-\frac{1}{6}\mathrm{i}\pi t} & -e^{-\frac{1}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{2}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{5}{6}\mathrm{i}\pi t} \\ g_5 & \text{CI} & 1 & -(-1)^{5/6} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & -\sqrt[6]{-1} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ g_6 & \text{CI} & 1 & \sqrt[6]{-1} e^{-\frac{1}{6}\mathrm{i}\pi t} & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} & (-1)^{5/6} e^{-\frac{5}{6}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(h\) | \(\left(0,\frac{1}{\sqrt{3}},\frac{t}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ h_1 & \text{CI} & 1 & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} \\ h_2 & \text{CI} & 1 &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(i\) | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{t}{2}\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001},\left\{0,0,\frac{1}{3}\right\}\right\} & \left\{3^-{}_{001},\left\{0,0,\frac{2}{3}\right\}\right\} \\ i_1 & \text{CI} & 1 & -e^{-\frac{1}{3}\mathrm{i}\pi t} & e^{-\frac{2}{3}\mathrm{i}\pi t} \\ i_2 & \text{CI} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} \\ i_3 & \text{CI} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{3}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{2}{3}\mathrm{i}\pi t} \\ \end{array} \right)\) |