MSG 136.505 \(B_{2u}\)

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{cccccccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{2_{110}\right\} & \left\{2_{\text{1-10}}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} & \left\{m_{110}\right\} & \left\{m_{\text{1-10}}\right\} \\ \text{A}_1 & \text{AI} & 2 & -\sqrt{2} & \sqrt{2} & 0 & 0 & 0 & 0 & 0 & -2 & \sqrt{2} & -\sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \text{A}_2 & \text{AI} & 2 & -\sqrt{2} & \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 2 & -\sqrt{2} & \sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \text{A}_3 & \text{AI} & 2 & \sqrt{2} & -\sqrt{2} & 0 & 0 & 0 & 0 & 0 & -2 & -\sqrt{2} & \sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \text{A}_4 & \text{AI} & 2 & \sqrt{2} & -\sqrt{2} & 0 & 0 & 0 & 0 & 0 & 2 & \sqrt{2} & -\sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
B \(\left(0,\frac{1}{2},0\right)\) \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{\bar{1}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} \\ \text{B}_1 & \text{AI} & 2 & 0 & 0 & -2\mathrm{i}& 0 & 0 & 0 & 0 \\ \text{B}_2 & \text{AI} & 2 & 0 & 0 & 2\mathrm{i}& 0 & 0 & 0 & 0 \\ \end{array} \right)\)
C \(\left(\frac{1}{2},\frac{1}{2},0\right)\) \(\left( \begin{array}{cccccccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{2_{110}\right\} & \left\{2_{\text{1-10}}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} & \left\{m_{110}\right\} & \left\{m_{\text{1-10}}\right\} \\ \text{C}_1 & \text{AI} & 2 &\mathrm{i}\sqrt{2} & -\mathrm{i} \sqrt{2} & 0 & 0 & 0 & 0 & 0 & -2 & -\mathrm{i} \sqrt{2} &\mathrm{i}\sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \text{C}_2 & \text{AI} & 2 &\mathrm{i}\sqrt{2} & -\mathrm{i} \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 2 &\mathrm{i}\sqrt{2} & -\mathrm{i} \sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \text{C}_3 & \text{AI} & 2 & -\mathrm{i} \sqrt{2} &\mathrm{i}\sqrt{2} & 0 & 0 & 0 & 0 & 0 & -2 &\mathrm{i}\sqrt{2} & -\mathrm{i} \sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \text{C}_4 & \text{AI} & 2 & -\mathrm{i} \sqrt{2} &\mathrm{i}\sqrt{2} & 0 & 0 & 0 & 0 & 0 & 2 & -\mathrm{i} \sqrt{2} &\mathrm{i}\sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
D \(\left(0,0,\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{2_{110}\right\} & \left\{2_{\text{1-10}}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} & \left\{m_{110}\right\} & \left\{m_{\text{1-10}}\right\} \\ \text{D}_1 & \text{BDI} & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
E \(\left(0,\frac{1}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{\bar{1}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} \\ \text{E}_1 & \text{A} & 1 &\mathrm{i}& 1 &\mathrm{i}& -1 & -\mathrm{i} & -1 & -\mathrm{i} \\ \text{E}_2 & \text{A} & 1 &\mathrm{i}& 1 &\mathrm{i}& 1 &\mathrm{i}& 1 &\mathrm{i}\\ \text{E}_3 & \text{A} & 1 &\mathrm{i}& -1 & -\mathrm{i} & -1 & -\mathrm{i} & 1 &\mathrm{i}\\ \text{E}_4 & \text{A} & 1 &\mathrm{i}& -1 & -\mathrm{i} & 1 &\mathrm{i}& -1 & -\mathrm{i} \\ \text{E}_5 & \text{A} & 1 & -\mathrm{i} & 1 & -\mathrm{i} & -1 &\mathrm{i}& -1 &\mathrm{i}\\ \text{E}_6 & \text{A} & 1 & -\mathrm{i} & 1 & -\mathrm{i} & 1 & -\mathrm{i} & 1 & -\mathrm{i} \\ \text{E}_7 & \text{A} & 1 & -\mathrm{i} & -1 &\mathrm{i}& -1 &\mathrm{i}& 1 & -\mathrm{i} \\ \text{E}_8 & \text{A} & 1 & -\mathrm{i} & -1 &\mathrm{i}& 1 & -\mathrm{i} & -1 &\mathrm{i}\\ \end{array} \right)\)
F \(\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{2_{110}\right\} & \left\{2_{\text{1-10}}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} & \left\{m_{110}\right\} & \left\{m_{\text{1-10}}\right\} \\ \text{F}_1 & \text{CI} & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,\frac{t}{2},0\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} \\ a_1 & \text{CI} & 2 & 0 & 0 & 0 \\ \end{array} \right)\)
\(b\) \(\left(\frac{1-t}{2},\frac{1}{2},0\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} \\ b_1 & \text{CI} & 2 & 0 & 0 & 0 \\ \end{array} \right)\)
\(c\) \(\left(\frac{t}{2},\frac{t}{2},0\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{110}\right\} & \left\{m_{001}\right\} & \left\{m_{\text{1-10}}\right\} \\ c_1 & \text{CI} & 2 & 0 & 0 & 0 \\ \end{array} \right)\)
\(d\) \(\left(0,\frac{t}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} \\ d_1 & \text{A} & 1 &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & -e^{-\frac{1}{2}\mathrm{i}\pi t} &\mathrm{i}\\ d_2 & \text{A} & 1 &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{1}{2}\mathrm{i}\pi t} & -\mathrm{i} \\ d_3 & \text{A} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi (t+1)} & -e^{-\frac{1}{2}\mathrm{i}\pi t} & -\mathrm{i} \\ d_4 & \text{A} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi (t+1)} & e^{-\frac{1}{2}\mathrm{i}\pi t} &\mathrm{i}\\ \end{array} \right)\)
\(e\) \(\left(\frac{1-t}{2},\frac{1}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{001}\right\} \\ e_1 & \text{C} & 1 & e^{\frac{i \pi t}{2}} & -\mathrm{i} e^{\frac{i \pi t}{2}} &\mathrm{i}\\ e_2 & \text{C} & 1 & e^{\frac{i \pi t}{2}} & e^{\frac{1}{2}\mathrm{i}\pi (t-3)} & -\mathrm{i} \\ e_3 & \text{C} & 1 & -e^{\frac{i \pi t}{2}} & -\mathrm{i} e^{\frac{i \pi t}{2}} & -\mathrm{i} \\ e_4 & \text{C} & 1 & -e^{\frac{i \pi t}{2}} & e^{\frac{1}{2}\mathrm{i}\pi (t-3)} &\mathrm{i}\\ \end{array} \right)\)
\(f\) \(\left(\frac{t}{2},\frac{t}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{110}\right\} & \left\{m_{001}\right\} & \left\{m_{\text{1-10}}\right\} \\ f_1 & \text{CI} & 2 & 0 & 0 & 0 \\ \end{array} \right)\)
\(g\) \(\left(0,0,\frac{t}{2}\right)\) \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{110}\right\} & \left\{m_{\text{1-10}}\right\} \\ g_1 & \text{AI} & 2 & -\sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} & \sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} & 0 & 0 & 0 & 0 & 0 \\ g_2 & \text{AI} & 2 & \sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} & -\sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
\(h\) \(\left(0,\frac{1}{2},\frac{t}{2}\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} \\ h_1 & \text{A} & 1 & -\mathrm{i} & -e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{1}{2}\mathrm{i}\pi (t+1)} \\ h_2 & \text{A} & 1 & -\mathrm{i} & e^{-\frac{1}{2}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} \\ h_3 & \text{A} & 1 &\mathrm{i}& -e^{-\frac{1}{2}\mathrm{i}\pi t} &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} \\ h_4 & \text{A} & 1 &\mathrm{i}& e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{1}{2}\mathrm{i}\pi (t+1)} \\ \end{array} \right)\)
\(i\) \(\left(\frac{1}{2},\frac{1}{2},\frac{t}{2}\right)\) \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{4^-{}_{001},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{2_{001}\right\} & \left\{m_{100},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\right\} & \left\{m_{110}\right\} & \left\{m_{\text{1-10}}\right\} \\ i_1 & \text{CI} & 2 &\mathrm{i}\sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} & -\mathrm{i} \sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} & 0 & 0 & 0 & 0 & 0 \\ i_2 & \text{CI} & 2 & -\mathrm{i} \sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} &\mathrm{i}\sqrt{2} e^{-\frac{1}{2}\mathrm{i}\pi t} & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)