\(D^0\) | EAZ & character of irrep | |
A | \(\left(0,0,0\right)\) | \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{A}_1 & \text{A} & 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}& -1 & \sqrt[4]{-1} & (-1)^{3/4} & -\mathrm{i} \\ \text{A}_2 & \text{A} & 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}& 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}\\ \text{A}_3 & \text{D} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} & -1 & -(-1)^{3/4} & -\sqrt[4]{-1} &\mathrm{i}\\ \text{A}_4 & \text{D} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} \\ \text{A}_5 & \text{D} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} & -1 & (-1)^{3/4} & \sqrt[4]{-1} &\mathrm{i}\\ \text{A}_6 & \text{D} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} \\ \text{A}_7 & \text{A} & 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}& -1 & -\sqrt[4]{-1} & -(-1)^{3/4} & -\mathrm{i} \\ \text{A}_8 & \text{A} & 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}& 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}\\ \end{array} \right)\) |
B | \(\left(\frac{1}{2},0,0\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} & \left\{\bar{1}\right\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{B}_1 & \text{D} & 2 & 0 & 0 & 0 \\ \end{array} \right)\) |
C | \(\left(\frac{1}{2},\frac{1}{2},0\right)\) | \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{C}_1 & \text{D} & 2 & 0 & 0 & 2\mathrm{i}& 0 & 0 & 0 & 0 \\ \text{C}_2 & \text{D} & 2 & 0 & 0 & -2\mathrm{i}& 0 & 0 & 0 & 0 \\ \end{array} \right)\) |
D | \(\left(0,0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{D}_1 & \text{A} & 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}& -1 & \sqrt[4]{-1} & (-1)^{3/4} & -\mathrm{i} \\ \text{D}_2 & \text{A} & 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}& 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}\\ \text{D}_3 & \text{D} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} & -1 & -(-1)^{3/4} & -\sqrt[4]{-1} &\mathrm{i}\\ \text{D}_4 & \text{D} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} \\ \text{D}_5 & \text{D} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} & -1 & (-1)^{3/4} & \sqrt[4]{-1} &\mathrm{i}\\ \text{D}_6 & \text{D} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} \\ \text{D}_7 & \text{A} & 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}& -1 & -\sqrt[4]{-1} & -(-1)^{3/4} & -\mathrm{i} \\ \text{D}_8 & \text{A} & 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}& 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}\\ \end{array} \right)\) |
E | \(\left(\frac{1}{2},0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} & \left\{\bar{1}\right\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{E}_1 & \text{D} & 2 & 0 & 0 & 0 \\ \end{array} \right)\) |
F | \(\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} & \left\{\bar{1}\right\} & \left\{\bar{4}_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{\bar{4}^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ \text{F}_1 & \text{D} & 2 & 0 & 0 & 2\mathrm{i}& 0 & 0 & 0 & 0 \\ \text{F}_2 & \text{D} & 2 & 0 & 0 & -2\mathrm{i}& 0 & 0 & 0 & 0 \\ \end{array} \right)\) |
\(D^1\) | EAZ & character of irrep | |
\(a\) | \(\left(\frac{t}{2},0,0\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ a_1 & \text{D} & 1 & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_2 & \text{D} & 1 &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(b\) | \(\left(\frac{1}{2},\frac{t}{2},0\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ b_1 & \text{D} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ b_2 & \text{D} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(c\) | \(\left(\frac{t}{2},0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ c_1 & \text{D} & 1 & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} \\ c_2 & \text{D} & 1 &\mathrm{i}e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(d\) | \(\left(\frac{1}{2},\frac{t}{2},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ d_1 & \text{D} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ d_2 & \text{D} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(e\) | \(\left(0,0,\frac{t}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ e_1 & \text{A} & 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}\\ e_2 & \text{D} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} \\ e_3 & \text{D} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} \\ e_4 & \text{A} & 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}\\ \end{array} \right)\) |
\(f\) | \(\left(\frac{1}{2},0,\frac{t}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ f_1 & \text{A} & 1 &\mathrm{i}\\ f_2 & \text{A} & 1 & -\mathrm{i} \\ \end{array} \right)\) |
\(g\) | \(\left(\frac{1}{2},\frac{1}{2},\frac{t}{2}\right)\) | \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{4_{001},\left\{\frac{1}{2},0,0\right\}\right\} & \left\{4^-{}_{001},\left\{0,\frac{1}{2},0\right\}\right\} & \left\{2_{001},\left\{\frac{1}{2},\frac{1}{2},0\right\}\right\} \\ g_1 & \text{A} & 1 & (-1)^{3/4} & \sqrt[4]{-1} & -\mathrm{i} \\ g_2 & \text{D} & 1 & \sqrt[4]{-1} & (-1)^{3/4} &\mathrm{i}\\ g_3 & \text{D} & 1 & -\sqrt[4]{-1} & -(-1)^{3/4} &\mathrm{i}\\ g_4 & \text{A} & 1 & -(-1)^{3/4} & -\sqrt[4]{-1} & -\mathrm{i} \\ \end{array} \right)\) |