MSG 159.63 \(\text{}^1E\)

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ \text{A}_1 & \text{AI} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{A}_2 & \text{CI} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{A}_3 & \text{AI} & 1 & 1 & 1 \\ \end{array} \right)\)
B \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ \text{B}_1 & \text{CI} & 1 \\ \end{array} \right)\)
C \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},0\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ \text{C}_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{C}_2 & \text{AIII} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{C}_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\)
D \(\left(0,0,\frac{1}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ \text{D}_1 & \text{AII} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{D}_2 & \text{CII} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{D}_3 & \text{AII} & 1 & 1 & 1 \\ \end{array} \right)\)
E \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ \text{E}_1 & \text{CII} & 1 \\ \end{array} \right)\)
F \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ \text{F}_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{F}_2 & \text{AIII} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{F}_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,0,\frac{t}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ a_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ a_2 & \text{AIII} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ a_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\)
\(b\) \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1-t}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ b_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ b_2 & \text{AIII} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ b_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\)
\(c\) \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{t-1}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ c_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ c_2 & \text{AIII} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ c_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\)
\(d\) \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{t}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ d_1 & \text{AIII} & 1 \\ \end{array} \right)\)
\(e\) \(\left(\frac{t}{2},\frac{t}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ e_1 & \text{AI} & 1 \\ \end{array} \right)\)
\(f\) \(\left(\frac{t}{2},\frac{t}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ f_1 & \text{AII} & 1 \\ \end{array} \right)\)
\(g\) \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ g_1 & \text{AIII} & 1 \\ \end{array} \right)\)
\(h\) \(\left(\frac{t+2}{6},-\frac{t-2}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ h_1 & \text{AIII} & 1 \\ \end{array} \right)\)