MSG 166.101 \(\text{}^1E_u\)

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{\bar{1}\right\} & \left\{\bar{3}_{001}\right\} & \left\{\bar{3}^-{}_{001}\right\} \\ \text{A}_1 & \text{AI} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{A}_2 & \text{AI} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{A}_3 & \text{AI} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{A}_4 & \text{AI} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{A}_5 & \text{AI} & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{A}_6 & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
B \(\left(0,0,\frac{3}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{\bar{1}\right\} & \left\{\bar{3}_{001}\right\} & \left\{\bar{3}^-{}_{001}\right\} \\ \text{B}_1 & \text{AI} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{B}_2 & \text{AI} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{B}_3 & \text{AI} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{B}_4 & \text{AI} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{B}_5 & \text{AI} & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{B}_6 & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
C \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{\bar{1}\right\} \\ \text{C}_1 & \text{AI} & 1 & -1 \\ \text{C}_2 & \text{AI} & 1 & 1 \\ \end{array} \right)\)
D \(\left(0,\frac{1}{\sqrt{3}},1\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{\bar{1}\right\} \\ \text{D}_1 & \text{AI} & 1 & -1 \\ \text{D}_2 & \text{AI} & 1 & 1 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,0,\frac{3 t}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ a_1 & \text{AI} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ a_2 & \text{BDI} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ a_3 & \text{AI} & 1 & 1 & 1 \\ \end{array} \right)\)
\(b\) \(\left(0,\frac{t}{\sqrt{3}},\frac{3-t}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ b_1 & \text{BDI} & 1 \\ \end{array} \right)\)
\(c\) \(\left(\frac{t}{2},\frac{t}{2 \sqrt{3}},\frac{3}{2}-t\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ c_1 & \text{BDI} & 1 \\ \end{array} \right)\)
\(d\) \(\left(0,\frac{2 t}{\sqrt{3}},\frac{t}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ d_1 & \text{BDI} & 1 \\ \end{array} \right)\)
\(e\) \(\left(\frac{t}{2},\frac{\sqrt{3} t}{2},0\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ e_1 & \text{BDI} & 1 \\ \end{array} \right)\)
\(f\) \(\left(\frac{1-t}{2},\frac{3 t+1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ f_1 & \text{BDI} & 1 \\ \end{array} \right)\)