MSG 204.30 \(A_u\)

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{cccccccccccccccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100}\right\} & \left\{2_{010}\right\} & \left\{2_{001}\right\} & \left\{3_{111}\right\} & \left\{3^-{}_{111}\right\} & \left\{3^-{}_{\text{1-1-1}}\right\} & \left\{3_{\text{1-1-1}}\right\} & \left\{3^-{}_{\text{-11-1}}\right\} & \left\{3_{\text{-11-1}}\right\} & \left\{3^-{}_{\text{-1-11}}\right\} & \left\{3_{\text{-1-11}}\right\} & \left\{\bar{1}\right\} & \left\{m_{100}\right\} & \left\{m_{010}\right\} & \left\{m_{001}\right\} & \left\{\bar{3}_{111}\right\} & \left\{\bar{3}^-{}_{111}\right\} & \left\{\bar{3}^-{}_{\text{1-1-1}}\right\} & \left\{\bar{3}_{\text{1-1-1}}\right\} & \left\{\bar{3}^-{}_{\text{-11-1}}\right\} & \left\{\bar{3}_{\text{-11-1}}\right\} & \left\{\bar{3}^-{}_{\text{-1-11}}\right\} & \left\{\bar{3}_{\text{-1-11}}\right\} \\ \text{A}_1 & \text{A} & 1 & 1 & 1 & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & -1 & -1 & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{A}_2 & \text{A} & 1 & 1 & 1 & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & 1 & 1 & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{A}_3 & \text{A} & 1 & 1 & 1 & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & -1 & -1 & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{A}_4 & \text{A} & 1 & 1 & 1 & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & 1 & 1 & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{A}_5 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{A}_6 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{A}_7 & \text{A} & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text{A}_8 & \text{A} & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
B \(\left(0,1,0\right)\) \(\left( \begin{array}{cccccccccccccccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100}\right\} & \left\{2_{010}\right\} & \left\{2_{001}\right\} & \left\{3_{111}\right\} & \left\{3^-{}_{111}\right\} & \left\{3^-{}_{\text{1-1-1}}\right\} & \left\{3_{\text{1-1-1}}\right\} & \left\{3^-{}_{\text{-11-1}}\right\} & \left\{3_{\text{-11-1}}\right\} & \left\{3^-{}_{\text{-1-11}}\right\} & \left\{3_{\text{-1-11}}\right\} & \left\{\bar{1}\right\} & \left\{m_{100}\right\} & \left\{m_{010}\right\} & \left\{m_{001}\right\} & \left\{\bar{3}_{111}\right\} & \left\{\bar{3}^-{}_{111}\right\} & \left\{\bar{3}^-{}_{\text{1-1-1}}\right\} & \left\{\bar{3}_{\text{1-1-1}}\right\} & \left\{\bar{3}^-{}_{\text{-11-1}}\right\} & \left\{\bar{3}_{\text{-11-1}}\right\} & \left\{\bar{3}^-{}_{\text{-1-11}}\right\} & \left\{\bar{3}_{\text{-1-11}}\right\} \\ \text{B}_1 & \text{A} & 1 & 1 & 1 & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & -1 & -1 & -1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{B}_2 & \text{A} & 1 & 1 & 1 & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & 1 & 1 & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{B}_3 & \text{A} & 1 & 1 & 1 & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & -1 & -1 & -1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{B}_4 & \text{A} & 1 & 1 & 1 & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & 1 & 1 & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{B}_5 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \text{B}_6 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{B}_7 & \text{A} & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text{B}_8 & \text{A} & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
C \(\left(\frac{1}{2},\frac{1}{2},0\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001}\right\} & \left\{\bar{1}\right\} & \left\{m_{001}\right\} \\ \text{C}_1 & \text{A} & 1 & -1 & -1 & 1 \\ \text{C}_2 & \text{A} & 1 & -1 & 1 & -1 \\ \text{C}_3 & \text{A} & 1 & 1 & -1 & -1 \\ \text{C}_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
D \(\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccccccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{100}\right\} & \left\{2_{010}\right\} & \left\{2_{001}\right\} & \left\{3_{111}\right\} & \left\{3^-{}_{111}\right\} & \left\{3^-{}_{\text{1-1-1}}\right\} & \left\{3_{\text{1-1-1}}\right\} & \left\{3^-{}_{\text{-11-1}}\right\} & \left\{3_{\text{-11-1}}\right\} & \left\{3^-{}_{\text{-1-11}}\right\} & \left\{3_{\text{-1-11}}\right\} \\ \text{D}_1 & \text{A} & 1 & 1 & 1 & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{D}_2 & \text{A} & 1 & 1 & 1 & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{D}_3 & \text{D} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{D}_4 & \text{D} & 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,t,0\right)\) \(\left( \begin{array}{cccccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{010}\right\} & \left\{m_{100}\right\} & \left\{m_{001}\right\} \\ a_1 & \text{A} & 1 & -1 & -1 & 1 \\ a_2 & \text{A} & 1 & -1 & 1 & -1 \\ a_3 & \text{A} & 1 & 1 & -1 & -1 \\ a_4 & \text{A} & 1 & 1 & 1 & 1 \\ \end{array} \right)\)
\(b\) \(\left(\frac{1}{2},\frac{1}{2},\frac{t}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001}\right\} \\ b_1 & \text{D} & 1 & -1 \\ b_2 & \text{D} & 1 & 1 \\ \end{array} \right)\)
\(c\) \(\left(\frac{t}{2},\frac{t}{2},\frac{t}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{111}\right\} & \left\{3^-{}_{111}\right\} \\ c_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ c_2 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ c_3 & \text{D} & 1 & 1 & 1 \\ \end{array} \right)\)
\(d\) \(\left(\frac{t}{2},1-\frac{t}{2},\frac{t}{2}\right)\) \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3^-{}_{\text{-11-1}}\right\} & \left\{3_{\text{-11-1}}\right\} \\ d_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ d_2 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ d_3 & \text{D} & 1 & 1 & 1 \\ \end{array} \right)\)
\(e\) \(\left(\frac{t}{2},1-\frac{t}{2},0\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{001}\right\} \\ e_1 & \text{A} & 1 & -1 \\ e_2 & \text{A} & 1 & 1 \\ \end{array} \right)\)