MSG 163.81 \(A_1\)

\(D^0\) EAZ & character of irrep
A \(\left(0,0,0\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{A}_1 & \text{BDI} & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{A}_2 & \text{BDI} & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{A}_3 & \text{BDI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
B \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{B}_1 & \text{BDI} & 1 & -1 \\ \text{B}_2 & \text{BDI} & 1 & 1 \\ \end{array} \right)\)
C \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},0\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{C}_1 & \text{AI} & 1 & 1 & 1 & -1 & -1 & -1 \\ \text{C}_2 & \text{AI} & 1 & 1 & 1 & 1 & 1 & 1 \\ \text{C}_3 & \text{AI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
D \(\left(0,0,\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{D}_1 & \text{AI} & 1 & 1 & 1 &\mathrm{i}&\mathrm{i}&\mathrm{i}\\ \text{D}_2 & \text{AI} & 1 & 1 & 1 & -\mathrm{i} & -\mathrm{i} & -\mathrm{i} \\ \text{D}_3 & \text{CI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
E \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{E}_1 & \text{AI} & 1 &\mathrm{i}\\ \text{E}_2 & \text{AI} & 1 & -\mathrm{i} \\ \end{array} \right)\)
F \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{F}_1 & \text{AI} & 1 & 1 & 1 &\mathrm{i}&\mathrm{i}&\mathrm{i}\\ \text{F}_2 & \text{AI} & 1 & 1 & 1 & -\mathrm{i} & -\mathrm{i} & -\mathrm{i} \\ \text{F}_3 & \text{AI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
\(D^1\) EAZ & character of irrep
\(a\) \(\left(0,0,\frac{t}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ a_1 & \text{AI} & 1 & 1 & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} & -e^{-\frac{1}{2}\mathrm{i}\pi t} & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_2 & \text{AI} & 1 & 1 & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{1}{2}\mathrm{i}\pi t} & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_3 & \text{AI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
\(b\) \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1-t}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ b_1 & \text{AI} & 1 & 1 & 1 &\mathrm{i}e^{\frac{i \pi t}{2}} &\mathrm{i}e^{\frac{i \pi t}{2}} &\mathrm{i}e^{\frac{i \pi t}{2}} \\ b_2 & \text{AI} & 1 & 1 & 1 & e^{\frac{1}{2}\mathrm{i}\pi (t-1)} & e^{\frac{1}{2}\mathrm{i}\pi (t-1)} & e^{\frac{1}{2}\mathrm{i}\pi (t-1)} \\ b_3 & \text{AI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
\(c\) \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{t-1}{2}\right)\) \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{010},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ c_1 & \text{AI} & 1 & 1 & 1 & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} & -\mathrm{i} e^{-\frac{1}{2}\mathrm{i}\pi t} \\ c_2 & \text{AI} & 1 & 1 & 1 & e^{-\frac{1}{2}\mathrm{i}\pi (t-1)} & e^{-\frac{1}{2}\mathrm{i}\pi (t-1)} & e^{-\frac{1}{2}\mathrm{i}\pi (t-1)} \\ c_3 & \text{AI} & 2 & -1 & -1 & 0 & 0 & 0 \\ \end{array} \right)\)
\(d\) \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{t}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} \\ d_1 & \text{AI} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ d_2 & \text{AI} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\)
\(e\) \(\left(\frac{t}{2},\frac{t}{2 \sqrt{3}},0\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ e_1 & \text{BDI} & 1 \\ \end{array} \right)\)
\(f\) \(\left(\frac{t}{2},\frac{t}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ f_1 & \text{CI} & 1 \\ \end{array} \right)\)
\(g\) \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{-110},\left\{0,0,\frac{1}{2}\right\}\right\} \\ g_1 & \text{AI} & 1 &\mathrm{i}\\ g_2 & \text{AI} & 1 & -\mathrm{i} \\ \end{array} \right)\)
\(h\) \(\left(\frac{t+2}{6},-\frac{t-2}{2 \sqrt{3}},\frac{1}{2}\right)\) \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{m_{210},\left\{0,0,\frac{1}{2}\right\}\right\} \\ h_1 & \text{AI} & 1 &\mathrm{i}\\ h_2 & \text{AI} & 1 & -\mathrm{i} \\ \end{array} \right)\)