\(D^0\) | EAZ & character of irrep | |
A | \(\left(0,0,0\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3_{001}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{A}_1 & \text{A} & 1 & -1 & 1 & -1 & 1 & -1 \\ \text{A}_2 & \text{D} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{A}_3 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{A}_4 & \text{A} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) \\ \text{A}_5 & \text{D} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) \\ \text{A}_6 & \text{A} & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right)\) |
B | \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},0\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{B}_1 & \text{D} & 1 & -1 \\ \text{B}_2 & \text{D} & 1 & 1 \\ \end{array} \right)\) |
C | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ \text{C}_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{C}_2 & \text{D} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{C}_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\) |
D | \(\left(0,0,\frac{1}{2}\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3_{001}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{D}_1 & \text{A} & 1 &\mathrm{i}& 1 &\mathrm{i}& 1 &\mathrm{i}\\ \text{D}_2 & \text{A} & 1 & (-1)^{5/6} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\mathrm{i} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \sqrt[6]{-1} \\ \text{D}_3 & \text{A} & 1 & \sqrt[6]{-1} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\mathrm{i} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & (-1)^{5/6} \\ \text{D}_4 & \text{A} & 1 & -\sqrt[6]{-1} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) &\mathrm{i}& \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -(-1)^{5/6} \\ \text{D}_5 & \text{A} & 1 & -(-1)^{5/6} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) &\mathrm{i}& -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -\sqrt[6]{-1} \\ \text{D}_6 & \text{A} & 1 & -\mathrm{i} & 1 & -\mathrm{i} & 1 & -\mathrm{i} \\ \end{array} \right)\) |
E | \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ \text{E}_1 & \text{A} & 1 &\mathrm{i}\\ \text{E}_2 & \text{A} & 1 & -\mathrm{i} \\ \end{array} \right)\) |
F | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ \text{F}_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ \text{F}_2 & \text{C} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ \text{F}_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\) |
\(D^1\) | EAZ & character of irrep | |
\(a\) | \(\left(0,0,\frac{t}{2}\right)\) | \(\left( \begin{array}{cccccccc} \text{} & \text{EAZ} & \{1\} & \left\{6_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3_{001}\right\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} & \left\{3^-{}_{001}\right\} & \left\{6^-{}_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ a_1 & \text{A} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_2 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_3 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_4 & \text{A} & 1 & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & -e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_5 & \text{A} & 1 & \frac{1}{2} \left(1+\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -e^{-\frac{1}{2}\mathrm{i}\pi t} & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2} \left(1-\mathrm{i} \sqrt{3}\right) e^{-\frac{1}{2}\mathrm{i}\pi t} \\ a_6 & \text{A} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(b\) | \(\left(\frac{1}{3},\frac{1}{\sqrt{3}},\frac{1-t}{2}\right)\) | \(\left( \begin{array}{ccccc} \text{} & \text{EAZ} & \{1\} & \left\{3_{001}\right\} & \left\{3^-{}_{001}\right\} \\ b_1 & \text{A} & 1 & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) \\ b_2 & \text{A} & 1 & \frac{1}{2}\mathrm{i}\left(\sqrt{3}+\mathrm{i}\right) & -\frac{1}{2}\mathrm{i}\left(\sqrt{3}-\mathrm{i}\right) \\ b_3 & \text{A} & 1 & 1 & 1 \\ \end{array} \right)\) |
\(c\) | \(\left(\frac{1}{2},\frac{1}{2 \sqrt{3}},\frac{t}{2}\right)\) | \(\left( \begin{array}{cccc} \text{} & \text{EAZ} & \{1\} & \left\{2_{001},\left\{0,0,\frac{1}{2}\right\}\right\} \\ c_1 & \text{A} & 1 & -e^{-\frac{1}{2}\mathrm{i}\pi t} \\ c_2 & \text{A} & 1 & e^{-\frac{1}{2}\mathrm{i}\pi t} \\ \end{array} \right)\) |
\(d\) | \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},0\right)\) | \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ d_1 & \text{D} & 1 \\ \end{array} \right)\) |
\(e\) | \(\left(\frac{t}{3},\frac{t}{\sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ e_1 & \text{C} & 1 \\ \end{array} \right)\) |
\(f\) | \(\left(\frac{3-t}{6},\frac{t+1}{2 \sqrt{3}},0\right)\) | \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ f_1 & \text{D} & 1 \\ \end{array} \right)\) |
\(g\) | \(\left(\frac{3-t}{6},\frac{t+1}{2 \sqrt{3}},\frac{1}{2}\right)\) | \(\left( \begin{array}{ccc} \text{} & \text{EAZ} & \{1\} \\ g_1 & \text{C} & 1 \\ \end{array} \right)\) |