MSG 162.75
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2^3\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{E}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{F}_3}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{f_3}]\\
&E_{1}^{2,-1}=0
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_3 & b_3 & c_3 & d_3 & e_3 & f_3 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccc}
\text{A}_3 & \text{B}_3 & \text{C}_3 & \text{D}_3 & \text{E}_3 & \text{F}_3 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
\end{align*}
\]