MSG 200.15

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z}_2\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_6}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_6}]\\ &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{f_1}]\\ &E_{1}^{2,-1}=0 \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{cccc} c_1 & d_1 & e_1 & f_1 \\ 1 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cccccccc} \text{A}_5 & \text{A}_6 & \text{B}_1 & \text{B}_2 & \text{C}_1 & \text{C}_2 & \text{D}_5 & \text{D}_6 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\ \end{align*} \]