MSG 220.90 
  
    \[\begin{align*}
    &E_{2}^{1,-1}=\mathbb{Z}_2\\
    &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_3}]\\
    &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_2}]\\
    &E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\alpha _1}]
    \end{align*}\]
  
  
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccc}
 a_1 & c_1 & c_2 \\
 0 & 1 & 1 \\
 1 & 0 & 0 \\
 -1 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{ccc}
 1 & 0 & 0 \\
 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccc}
 \text{A}_1 & \text{A}_2 & \text{A}_3 \\
 1 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccc}
 a_1 & c_1 & c_2 \\
 0 & 1 & 1 \\
 1 & 0 & 0 \\
 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccc}
 1 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]