MSG 4.9
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2^2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\beta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cc}
b_1 & e_1 \\
1 & 0 \\
0 & 1 \\
\end{array}
\right)\\
\end{align*}
\]