MSG 230.147
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{E}_3}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{f_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_3}]\\
&E_{1}^{2,-1}=0
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
a_1 & d_3 & e_3 & f_3 & g_3 \\
1 & 1 & -1 & -1 & 0 \\
-1 & -1 & 2 & 1 & 0 \\
0 & -1 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccc}
\text{A}_1 & \text{A}_2 & \text{A}_3 & \text{B}_1 & \text{B}_2 & \text{B}_3 & \text{D}_3 & \text{E}_3 \\
1 & 1 & 0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
\end{align*}
\]