MSG 51.293

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z}_2^2\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{E}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{H}_1}]\\ &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{i_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{l_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{m_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{p}_1}]\\ &E_{1}^{2,-1}=0 \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{cccc} i_1 & l_1 & m_1 & \text{p}_1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cccc} \text{A}_1 & \text{D}_1 & \text{E}_1 & \text{H}_1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right)\\ \end{align*} \]