MSG 70.528

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z}_2^2\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_2}]\\ &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_1}]\\ &E_{1}^{2,-1}=0 \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{ccc} a_1 & c_1 & e_1 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cc} \text{A}_1 & \text{A}_2 \\ 1 & 1 \\ 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \right)\\ \end{align*} \]