MSG 103.197 
  
    \[\begin{align*}
    &E_{2}^{1,-1}=\mathbb{Z}_2\\
    &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_1}]\\
    &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_1}]\\
    &E_{1}^{2,-1}=0
    \end{align*}\]
  
  
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cc}
 a_1 & b_1 \\
 1 & 0 \\
 -1 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccc}
 \text{A}_1 & \text{B}_1 & \text{B}_2 & \text{C}_1 \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccc}
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
\end{align*}
\]