MSG 129.414
\[\begin{align*}
&E_{2}^{1,-1}=0\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_6}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_7}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_8}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_6}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_7}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_8}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{E}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_4}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\gamma _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & a_2 & d_1 & d_2 & g_3 & g_4 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & -1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccccc}
\text{A}_5 & \text{A}_6 & \text{A}_7 & \text{A}_8 & \text{B}_1 & \text{D}_5 & \text{D}_6 & \text{D}_7 & \text{D}_8 & \text{E}_1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & -1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & a_2 & d_1 & d_2 & g_3 & g_4 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]