MSG 138.522

\[\begin{align*} &E_{2}^{1,-1}=0\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_6}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_7}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_8}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\\ &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_4}]\\ &E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\gamma _1}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{cccc} a_1 & a_2 & g_3 & g_4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{ccccc} \text{A}_5 & \text{A}_6 & \text{A}_7 & \text{A}_8 & \text{B}_1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &[V^{(1)}]^{-1}=\left( \begin{array}{cccc} a_1 & a_2 & g_3 & g_4 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Sigma^{(1)}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ \end{array} \right) \end{align*} \]