MSG 142.564
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_6}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_7}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_8}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_2}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_4}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{h_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\varepsilon _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
a_3 & a_4 & g_1 & g_2 & h_1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccc}
\text{A}_5 & \text{A}_6 & \text{A}_7 & \text{A}_8 & \text{C}_1 & \text{C}_2 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
a_3 & a_4 & g_1 & g_2 & h_1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]