MSG 169.116
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_6}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{F}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{f_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\beta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccc}
d_1 & e_1 & f_1 & g_1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccc}
\text{A}_1 & \text{A}_6 & \text{B}_1 & \text{B}_2 & \text{C}_3 & \text{F}_1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
\end{align*}
\]