MSG 198.10

\[\begin{align*} &E_{2}^{1,-1}=0\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_4}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\\ &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_2}]\\ &E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\delta _1}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{cc} c_1 & c_2 \\ -1 & 1 \\ 1 & 0 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{ccc} \text{A}_3 & \text{A}_4 & \text{B}_1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} \right)\\ \end{align*} \]