MSG 212.60
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_4}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{B}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_3}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_4}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_3}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\delta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & a_2 & a_3 & a_4 & c_1 & c_2 & e_1 & e_2 & e_3 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & -2 & 0 & 2 & 0 & -3 & 0 & 1 & 1 \\
0 & 1 & 0 & -1 & 0 & 2 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccccccccc}
\text{A}_1 & \text{A}_2 & \text{A}_3 & \text{A}_4 & \text{A}_5 & \text{B}_1 & \text{B}_2 & \text{C}_5 & \text{D}_3 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & -3 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & a_2 & a_3 & a_4 & c_1 & c_2 & e_1 & e_2 & e_3 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]