MSG 31.127
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2^2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{D}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{F}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{F}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{G}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{G}_2}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{h_1}]\\
&E_{1}^{2,-1}=0
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & b_1 & d_1 & e_1 & g_1 & h_1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccc}
\text{A}_1 & \text{A}_2 & \text{D}_1 & \text{D}_2 & \text{F}_1 & \text{F}_2 & \text{G}_1 & \text{G}_2 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
\end{align*}
\]