MSG 81.35
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2^2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{A}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{\text{C}_2}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_2}]\\
&E_{1}^{2,-1}=0
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cc}
c_2 & e_2 \\
1 & 0 \\
0 & 1 \\
\end{array}
\right)\\
\end{align*}
\]