MSG 143.3
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2^3\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_3}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & a_2 & a_3 & b_1 & b_2 & b_3 & c_1 & d_1 & e_1 \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & 0 & -2 \\
-1 & -1 & -1 & 1 & 1 & 1 & 3 & -1 & -3 \\
1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 1 \\
-1 & 0 & 0 & 0 & 1 & 0 & 1 & -1 & -1 \\
-1 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccccccc}
\text{A}_2 & \text{C}_1 & \text{C}_2 & \text{D}_1 & \text{E}_1 & \text{E}_2 & \text{E}_3 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & -2 & 1 & 1 & 1 & 1 \\
0 & 0 & -1 & 0 & 1 & 1 & 1 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & a_2 & a_3 & b_1 & b_2 & b_3 & c_1 & d_1 & e_1 \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & 0 & -2 \\
-1 & -1 & -1 & 1 & 1 & 1 & 3 & -1 & -3 \\
-1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]