MSG 155.46
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}^2\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_3}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & a_2 & a_3 & b_1 & c_1 & d_1 \\
1 & 1 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cc}
\text{A}_3 & \text{B}_3 \\
1 & -1 \\
0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & a_2 & a_3 & b_1 & c_1 & d_1 \\
1 & 1 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]