MSG 162.78

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z}_2\\ &E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_6}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_3}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_3}]\\ &E_{1}^{2,-1}=0 \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{ccc} a_3 & b_3 & c_3 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cccc} \text{A}_5 & \text{A}_6 & \text{C}_3 & \text{F}_3 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ \end{array} \right) \end{align*} \]