MSG 165.92

\[\begin{align*} &E_{2}^{1,-1}=0\\ &E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_6}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_2}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_3}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_2}]\\ &E_{1}^{2,-1}=0 \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{cc} a_3 & b_2 \\ 1 & 0 \\ 0 & 1 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{ccccc} \text{A}_5 & \text{A}_6 & \text{C}_3 & \text{D}_2 & \text{F}_3 \\ 1 & 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \end{array} \right) \end{align*} \]