MSG 50.280
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{G}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{i_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{k_1}]\\
&E_{1}^{2,-1}=0
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & c_1 & e_1 & g_1 & i_1 & k_1 \\
0 & 0 & -1 & 1 & 1 & 0 \\
-1 & 0 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
1 & -1 & 1 & -2 & -1 & 0 \\
1 & -1 & 2 & -3 & -1 & -1 \\
1 & -1 & 1 & -3 & -1 & -1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccccc}
\text{A}_1 & \text{B}_1 & \text{B}_3 & \text{C}_1 & \text{E}_1 & \text{F}_1 & \text{F}_3 & \text{G}_1 & i_1 & k_1 \\
1 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & 2 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 2 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & -2 & 1 & 0 & 1 & -3 & 2 & -2 & 0 \\
0 & 0 & -2 & 0 & 1 & 1 & -5 & 2 & -2 & -2 \\
0 & 0 & -1 & 0 & 0 & 1 & -2 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]