MSG 61.437

\[\begin{align*} &E_{2}^{1,-1}=0\\ &E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_3}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_2}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{k_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{k_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{l_1}]\\ &E_{1}^{2,-1}=2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\zeta _1}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{ccccccc} a_1 & b_1 & d_1 & d_2 & k_1 & k_2 & l_1 \\ 1 & 1 & 0 & 2 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cccc} \text{A}_1 & \text{C}_1 & \text{D}_1 & \text{D}_3 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &[V^{(1)}]^{-1}=\left( \begin{array}{ccccccc} a_1 & b_1 & d_1 & d_2 & k_1 & k_2 & l_1 \\ 1 & 1 & 0 & 2 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Sigma^{(1)}=\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \end{array} \right) \end{align*} \]