MSG 83.44
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}^3\\
&E_{1}^{0,-1}=0\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_3}]\\
&E_{1}^{2,-1}=2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
e_1 & e_3 & f_1 & g_1 & g_3 \\
1 & 1 & 0 & -1 & -1 \\
0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
e_1 & e_3 & f_1 & g_1 & g_3 \\
1 & 1 & 0 & -1 & -1 \\
0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]