MSG 83.48
\[\begin{align*}
&E_{2}^{1,-1}=0\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_2}]\\
&E_{1}^{1,-1}=2\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_2}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\\
&E_{1}^{2,-1}=2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _2}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
c_1 & c_2 & d_1 & d_2 & f_1 \\
1 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 1 \\
0 & -1 & 1 & 0 & 1 \\
0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cc}
\text{E}_1 & \text{E}_2 \\
1 & 0 \\
0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
c_1 & c_2 & d_1 & d_2 & f_1 \\
1 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 1 \\
0 & -1 & 1 & 0 & 1 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]