MSG 3.2
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}^2\\
&E_{1}^{0,-1}=0\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{j_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & c_1 & d_1 & f_1 & i_1 & j_1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & -2 & 1 & 3 & 1 & -1 \\
0 & -1 & 0 & 1 & 1 & -1 \\
0 & -1 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & c_1 & d_1 & f_1 & i_1 & j_1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & -2 & 1 & 3 & 1 & -1 \\
0 & -1 & 0 & 1 & 1 & -1 \\
0 & -1 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]