MSG 127.392
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}^3 \times \mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{D}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{h_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{i_1}]\\
&E_{1}^{2,-1}=2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
c_1 & f_1 & g_1 & h_1 & i_1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccc}
\text{A}_1 & \text{D}_1 & i_1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
c_1 & f_1 & g_1 & h_1 & i_1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{c}
1 \\
\end{array}
\right)
\end{align*}
\]