MSG 127.394 
  
    \[\begin{align*}
    &E_{2}^{1,-1}=0\\
    &E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_1}]\\
    &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\\
    &E_{1}^{2,-1}=0
    \end{align*}\]
  
  
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{c}
 g_1 \\
 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccc}
 \text{A}_1 & \text{A}_2 & \text{C}_1 & \text{D}_1 & \text{D}_2 & \text{F}_1 \\
 1 & 1 & 0 & -1 & -1 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccc}
 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]