MSG 139.539
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{C}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{h_1}]\\
&E_{1}^{2,-1}=2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cc}
g_1 & h_1 \\
0 & 1 \\
-1 & 2 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccc}
\text{A}_1 & \text{B}_1 & \text{C}_1 & \text{D}_1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{c}
0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{cc}
g_1 & h_1 \\
1 & -2 \\
0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{c}
1 \\
\end{array}
\right)
\end{align*}
\]