MSG 166.102
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_6}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_3}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_2}]\\
&E_{1}^{2,-1}=2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccc}
a_3 & f_1 & f_2 \\
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccc}
\text{A}_5 & \text{A}_6 & a_3 \\
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cc}
1 & 0 \\
0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccc}
a_3 & f_1 & f_2 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cc}
1 & 0 \\
0 & 0 \\
\end{array}
\right)
\end{align*}
\]