MSG 216.76 
  
    \[\begin{align*}
    &E_{2}^{1,-1}=\mathbb{Z}\\
    &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{C}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{C}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_2}]\\
    &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{f_1}]\\
    &E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]
    \end{align*}\]
  
  
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccc}
 b_1 & d_2 & e_1 & f_1 \\
 0 & 0 & 0 & 1 \\
 -1 & 1 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 -1 & 2 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccc}
 \text{A}_1 & \text{A}_2 & \text{B}_1 & \text{C}_1 & \text{C}_2 & \text{D}_1 & \text{D}_2 & f_1 \\
 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cc}
 1 & 0 \\
 0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{cccc}
 b_1 & d_2 & e_1 & f_1 \\
 1 & 0 & 2 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cc}
 1 & 0 \\
 0 & 1 \\
\end{array}
\right)
\end{align*}
\]