MSG 33.151
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}^2 \times \mathbb{Z}_2^2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{F}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{F}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{G}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{k_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\beta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccc}
a_1 & b_1 & e_1 & g_1 & i_1 & k_1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccccccccc}
\text{A}_1 & \text{E}_1 & \text{F}_1 & \text{F}_3 & \text{G}_1 & a_1 & b_1 & e_1 & g_1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccc}
a_1 & b_1 & e_1 & g_1 & i_1 & k_1 & \beta _1 \\
0 & 0 & 1 & 1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cc}
1 & 0 \\
0 & 0 \\
\end{array}
\right)
\end{align*}
\]