MSG 48.262
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}^2 \times \mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{G}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{k_1}]\\
&E_{1}^{2,-1}=0
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccc}
a_1 & b_1 & i_1 & k_1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccc}
\text{A}_1 & \text{E}_1 & \text{E}_2 & \text{G}_1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]