MSG 57.385
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z} \times \mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{G}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{H}_1}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{h_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{h_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{k_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{l_1}]\\
&E_{1}^{2,-1}=2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\zeta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
e_1 & h_1 & h_2 & k_1 & l_1 \\
1 & 0 & -2 & 1 & -1 \\
0 & 1 & 1 & -1 & 1 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -2 & 1 & 0 \\
0 & 0 & 2 & -1 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccc}
\text{A}_1 & \text{B}_1 & \text{G}_1 & \text{H}_1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
e_1 & h_1 & h_2 & k_1 & l_1 \\
1 & 0 & -2 & 1 & -1 \\
0 & 1 & 1 & -1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]