MSG 63.460

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z} \times \mathbb{Z}_2^3\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_2}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{h_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_1}]\\ &E_{1}^{2,-1}=0 \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{ccccc} a_1 & b_1 & g_1 & h_1 & i_1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{ccccccc} \text{A}_1 & \text{B}_1 & \text{D}_1 & \text{E}_1 & \text{F}_1 & \text{F}_2 & b_1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right) \end{align*} \]